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SUMMARY

This paper presents the sequential statistical test used for selection of the most accu-
rate subset of diagnostic tests. The proposed method is based on iterative application
of Z-test which compares areas under ROC (AUC) assessed for multiple diagnostic
tests. Usage of the nonparametric method for estimation of AUC allows to apply this
method for small numbers of patients.
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1. Introduction

In the eighties of last century Mac Master introduced the principles of medicine based
on evidences. The basic assumptions of this trend say that all clinical decisions are
made on the basis of scientific circumstances. It develops application of statistical
methods to clinical practices and gives a background for a new medical branch which
is called clinical epidemiology. One of the main tasks for clinical epidemiologists is
to search most effective diagnostic methods for a given disease in respect of health
and economic costs. Solving these problems requires the objective assessment which
could evaluate accuracy of diagnostic tests. The most popular method for this purpose
is utilization of probabilistic parameters which express diagnostic precision such as
sensitivity and specificity of a test.

The development of the diagnostic equipment and laboratory tests makes a new
problem in diagnostic medicine ~ finding an optimal set of diagnostic examinations
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which ensure the best accuracy. The goal of our article is to propose the sequential
methods for selection of such a set. In Section 2 we describe the basic model for
diagnostic accuracy estimation, in Section 3 we expand this model for multiple tests
and in Section 4 we present our strategy for selection of the optimal set ensuring the
possible best diagnostic accuracy.

2. Basic probabilistic model for estimation of diagnostic accuracy

2.1. The parameters for diagnostic accuracy measurement

The basic model is used for estimation of accuracy of a single diagnostic test. It also
allows comparing diagnostic accuracy between two tests.

Let’s assume that D is a dichotomous random variable which represents a disease
status, i.e. D = 0 expresses the absence of a given disease and D = 1 describes the
existence of the disease. Similarly, let T' is a dichotomous random variable which
represents results of a given diagnostic test, with 7" = 0 for negative results and
T =1 for positive results. The values of the T variable are denominated based on
measurements of new test activity. The “true” status of a disease is determined by
the other, reference diagnostic test with possible highest diagnostic accuracy, called
the “gold standard test”. However, the clinical application of the reference diagnostic
test is usually impossible because of its high health or economic costs.

The empirical joint distribution of (D, T) could be presented in the decision table.
It is easy to see that the table content could be expressed by the four conditional
probabilities:P (T' = 1|D = 1), P(T'=0|D =0), P (T = 1|D =0),P(T = 0|D = 1).
The first one is known as a diagnostic test sensitivity (denoted by S.) and the second
one is its specificity (denoted by Sp).

Table 1. The decision table for a single diagnostic test; (nx:) denotes the number of patients
in given subgroups

Disease Test
T=0 T=1

D=0 n11 n12

D=1 N2y Na2

These are the most important parameters describing accuracy of a diagnostic test.
The remaining parameters are known as false negative and false positive probabilities.
Sometimes it is more comfortable to use one parameter which is a combination of
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sensitivity and specificity. Thus, we can apply odds ratio defined as

— Se . Sp
OR= 1= 1= (1)

The empirical marginal distributions of D and T let us find the estimators of sensiti-
vity and specificity. They have the following form:

& n22 & 11

Se=————, Sp=_——"— (2)

= , - .
N1 + No2 n11 + N12

The variance of specificity and sensitivity can be expressed in the following manner
(Zhou et al. 2001 )

Se(1=50) gy = Sell=S0).

Var S'e =
(Se) n21 + N22 n11 + N2

(3)
The estimators for variances are obtained by inserting (2) into (3).

The sensitivity and specificity are used for characterization of a new diagnostic
test. From clinical point of view, it is very important to assess the predictable values
of diagnostic tests which describe probability of a disease based on the results of a
diagnostic test. Such probabilities depend on disease prevalence in a given population,
denoted byP (D). Applying the Bayes theorem, we obtain:

o S.P (D)
PO=UT=1= 55 my+1-5)0A-P D)) (4)
P(D=0[T=0)= s,

~ (1-8p)P(D)+S(1-P(D))

The first expression is known as a positive predictive value (PPV’) and the second
one is a negative predictive value (NPV). The estimators of the predictive values
have the forms:
PPV=_—"2 NPV =—21 (5)
n12 + N22 N1 + N2y
They express the so called “post test” parameters which strongly depend on a study
population.

2.2. Estimation and comparison of ROC curves

The expressions (2) and (4) were presented under ‘the assumption that a diagnostic
test gives two values, for example existence or lack of a given clinical symptom. In
many applications the values are on the ordinal scale, i.e. we estimate sensitivity and
specificity of a diagnostic test for some of its values, e.g. t1,%2, ..., tk-

The relation between parameters values and test values is described by the set of
the pairs [Se(t:), 1 — Sp(t;)] for ¢ = 1,..., k. This set is called a receiver operating cha-
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Fig. 1. The example of a ROC curve. The thick line denotes an ideal curve.

racteristic (ROC). When we approximate it by a given curve, we will obtain the ROC
curve. This approximation may be performed on the base of traditional methods (e.g.
LMS) (Grey et al.,1972). However, such approximation is not an efficient estimator
of the ROC. Therefore, we recommend the methods introduced by Dorfman and Alf
(1968). They assume two latent random variables 70,71 which represent the values
of a diagnostic test obtained for healthy and ill patients, respectively. For a large
sample of patients the distributions of 7, 7; are normal, i.e. T; ~ NM(p;,04),3 = 0.1.
Thus, the estimator of ROC has the following form:

[1-@(t),1- 3t —a)] — oo < t < o0, (6)

where ® is the cumulative normal distribution and b = /61,8 = (i1, — [19)/&1.These
parameters standardize the distribution of the latent variables. The example of ROC
curve is shown in Fig.1.

The parameters of the ROC curve and their variances are obtained by ML methods.
The algorithm for estimation of their variance (as inverse of Fisher matrix) is presented
by Collett (2003).

For estimation of the ROC it is necessary to introduce the next parameter which
describes “global” properties of a given statistical test. It is the area under ROC
curve, defined as

A= [ st - s,m). ™)

When we apply the estimator (6), the area under curve can be estimated as (McClish,
1989):
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The variance of (8) is given by the formula;

Var(A) = §°Var(a) + ¥*Var(b) + 28Cov(a, b), 9)
where
exp[—a2/2(1 + b)) abexp[—a2/2(1 + b?)]

Jor( + 52) = Jor By

It is very important to note that the above equations present the parametric form of
the estimator for the area under ROC. It is an efficient estimator under assumption
of the large sample size. When the number of patients is small, the latent variables
do not have the normal distributions. Therefore, we propose to use a nonparametric
estimator obtained by Hanley and McNeil (1982):

A= 1 ii‘l’(tu,tw), (10)

n
071 i=1 j=1

‘B.‘_—‘

where n1,ng denote, respectively, the number of patients with a disease and without
it and ty,tg are the values of a test measured in these groups. ¥ is so called a ranking
function defined as:

0 fory>ux,
\I/(.’I),y) = % fory ==z, (11)
1 fory<z

Now, we concentrate on the estimation of the variance of the area under ROC curve.
To simplify the equation form, let’s introduce the two vectors being the components
of the variance: VO = [V°(1)---V°(n,)]T and V! = [V1(1)---V!(n1)]T. Theirs
coordinates are defined as (Zhou et al., 2003):

. nD
Vi) = 'nL., Zj=1 U(t1i,toj),

- (12)
Vo) =& D Ultites):
Thus, the estimator for the variance of (10) has the following form:
-~ 1 1
Var(d) = 81 + S0, (13)

where S; = =13 YL, [Vi(k) — AP%,i = 0.1.

Direct comparison of two curves is often too conservative. The value of the area
under ROC curve is frequently used to compare diagnostic accuracy of a new test
with the reference one. Therefore, it’s sufficient to find the difference between the
areas under the testing and “gold standard” curve.
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Let’s assume that Ar denotes the area under ROC for a new test and Ag for a
gold standard which were estimated for ny and ng patients.

The classical method used for this purpose is to test the following statistical hy-
pothesis:

Hy: Ap = Ag, (14)

against the alternative hypothesis:
H1 . AT 7é Ag.
The verification of these hypothesizes is performed by the classical Z-statistic:

Ar — Ag
Z<_2T-26 15
SelAr — Ag| (15)

which has a standard normal distribution under Hy. Sg|Ar — Ag] is a standard error
of a difference between two areas. For independent tests, we have Sg[Ar — Agl =

%Var(AT) + ;}G—Var(Ag).

However, the modern biostatistical inference sometimes assumes that equality of
two areas under the curve may be too conservative condition. Therefore, Obuchowski
(1997) introduced the term: equivalent areas. Two areas are equivalent when the
different between them belongs to the assumed interval, ie. AA € [Ay;Ag]. This
condition can be transformed to the following hypothesis:

Hy: AA<A;p or AA> Ay (16)
against alternative hypothesis
H Ay <AA<A;.

The hypothesis (16) requires usage of two test statistics:

AA- AL _AA-Ay
SplAA] T 7% TSE[AA]

Both these statistics have standard normal distribution under Hy.

Zy = (17)

3. The estimation of diagnostic accuracy in multiple tests

Considerations presented in the second section were concerned with the estimation of
diagnostic accuracy for a single medical test. However, modern diagnostic procedures
usually contain several, different types of examinations. Thus, there is a need to
estimate diagnostic accuracy of multiple tests performed on the same patients.
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We limit our description to two multiple tests but the presented method is valid
for any number of tests. Thus, we must distinguish two diagnostic rules:

1. the diagnosis is positive when both tests A and B are positive; in this case the
sensitivity and specificity of multiple two tests will be denoted by Se,np5,Spang:
2. the diagnosis is positive when either test A or test B are positive; analogously,

the sensitivity and specificity will be denoted by S, 5,5

pauB*

Zhou et al. (2002) showed that these parameters could be expressed by the sensi-
tivity and specificity of a single test in the following manner:

Seans = SeaSens SPAnB = Sm + SPB - SPASPB’ (18)
SeAuB = Ses + Sep — SenSens SPAUB = SPA SPB

Moreover, the above formulas do not depend on a diagnostic scheme, i.e., in both the
parallel and in the serial scheme the combined parameters are expressed by (18).

The estimation of the sensitivity and specificity of multiple tests allows to find a
“global” ROC curve.

4. Selection of the optimal set of diagnostic tests

Let’s assume that our problem relies on finding the optimal set of diagnostic tests
in the hierarchical diagnostic tree (Fig. 2). This model is common for many clinical
situations, for example in ovarian cancer diagnosis. In the beginning a patient has a
clinical examination. If there are clinical circumstances, the USG will be performed.
If the USG shows an ovarian tumour, a biochemical test will be applied. This model
fulfils the rule (i).

Let’s assume also that we have m tests with known specificities and sensitivities at
each level of diagnosis, estimated in a group consisting of N patients. We want to find
the most accurate subset of these tests. The proposed strategy uses the estimation of
the multiple test parameters and possibility of hypothesis testing. The strategy goes
as follows:

1. Find the best test at a clinical level in the sense of the area under ROC denoted
by Ac.

2. Select one of diagnostic tests at level two. In the case of USG examination, it
could be the set of picture features.

3. Estimate the “global” ROC for the selected clinical symptoms and the USG test,
denoted by Acnu(?), i =1,...,m..
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Fig. 2. The three-layer diagnostic model

4. Test the following hypothesis:

Hy: ficmj(i) = fic
,i=1,...,m. (19)
Hi: Acnu(i) > Ac
5. Use the one-side statistical test:
Acru(i) — Ac i
Se[Acnu (i) — Ac)’

Because the results of these diagnostic tests are mutually dependent, the denomi-
nator of (20) is described by the formula:

7 =

1,..,m. (20)

1 2
SE[.AC{']U — Ac] = \/N [Va’r‘(Acnu) + Var(AC)] + WCO’U(ACOU, Ac).

By analogy to (13), the covariance between two areas under ROC is computed in
the following form ( DeLong et al. 1988):

1
Cov(Acnu, Ac) = W(C& + Co), (21)

where:

N
Z Vénu () = AcnullVA (1) - Adl,
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N
G = Frog SVanu(t = AerullV) - o)

1. Repeat 3 and 4 m times (for all possible USG tests).

2. The above test allows to find a subset T ={1, ..., k} of diagnostic tests which signi-
ficantly increase diagnostic accuracy in comparison to the clinical examinations.

3. Find the optimal USG test as:

i* =argmax Z(1). (22)
i€T

4. Repeat this procedure for biochemical test, replacing Ac by Ag and Acu by
Ac,u,p which denotes the area under ROC for the “three-layer” test, i.e. for the
optimal clinical-USG test together with a new biochemical test.

The proposed criteria for the most accurate set of tests described by (22) can be
expanded to other decision rules. Particularly, when we try also to minimize the
economical cost of diagnosis , the “invasive cost” for a patient or the time needed to
obtain the result, we can rewrite the expression (22) to the formula form:

i* =argmax [c1Z (1) — cae(i) — c3e(d) — caT(9)], (23)
i€T
where ¢,t¢,7 are the respective costs and ¢i;...,c4 are the weights in the decision
function.

5. Conclusion

The aim of the article was the presentation of the analytical methods for diagnostic
accuracy analysis. We generalized the known theory of ROC curve for multiple dia-
gnostic tests and applied it for the selection of the most accurate set of diagnostic
tests. A drawback of the proposed method is its sequential character which requires
multiple computation of the test statistic. However, the iterative form of our strategy
allows to implement it in a SAS procedure which could use the available procedures
for computation of the Z-statistic in paired version.

Moreover, the proposed expansion of the decision function allows for the multidi-
mensional selection of optimal diagnostic tests.
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Sekwencyjny wybér optymalnego zbioru testéw diagnostycznych
STRESZCZENIE

W artykule zaproponowano sekwencyjny test statystyczny stuzacy wyborowi opty-
malnego zestawu testéw diagnostycznych, zapewniajgcych najlepszg dokladnosé dia-
gnostyczng. Metoda ta polega na iteracyjnym stosowaniu testu Z do poréwnania pél
pod krzywymi ROC, wyznaczanymi dla grupy testéw diagnostycznych. Wykorzysta-
nie nieparametrycznego estymatora pola pod krzywa ROC umozliwia zastosowanie
tej metody dla malej grupy pacjentéw.

SLOWA KLUCZOWE: test diagnostyczny, charakterystyka operacyjna odbiornika, ob-
szar pod krzyws, sekwencyjny test diagnostyczny.



